

Evidence for Partially Bound States in Cooperative Molecular Recognition Interfaces [*J. Am. Chem. Soc.*, 2008, 130, 17718–17725] [*J. Am. Chem. Soc.* 2008, 130, 17718]. Elena Chekmeneva, Christopher A. Hunter,* Martin J. Packer, and Simon M. Turega

Pages 17722–17723: Equations 3, 4, 6 and 8 relating to the analysis of the sequential binding equilibria are corrected below. The numerical values of the stepwise association constants and effective molarities reported in Tables 5 and 6 are corrected below. Qualitatively, the results are similar to those in the original publication, and the main conclusions are not affected. However, the overall association constant estimated for the doubly H-bonded complex in Table 6 is always larger than the value estimated for a singly H-bonded complex, even when the most populated state of the doubly H-bonded complex is the singly H-bonded species.

$$K_{\text{obs}} = K_0(1 + K_1) \tag{3}$$

$$K_{\text{obs}} = K_0(1 + K_1 + K_1 K_2) \tag{4}$$

$$EM_1 = \frac{K_1}{4K_H} = \frac{K_{\text{obs}} - K_0}{4K_0K_H} \tag{6}$$

$$EM_2 = \frac{8K_2}{6K_H} = \frac{8(K_{\text{obs}} - K_0 - K_0 K_1)}{6K_0 K_1 K_H}$$
(8)

Table 5. Effective Molarities, EM (M), Sequential Equilibrium Constants for H-Bond Interactions, K_1 and K_2 (M $^{-1}$), in the Complexes Formed Between Porphyrin **3** and Ligands **4b** and **4d** at 298 K a

	3	4b	3 · 4d		
solvent	K ₁	EM ₁	K ₂	EM ₂	
toluene	14	0.1	14	0.8	
TCE	3	0.2	b	b	
DCM	5	0.7	b	b	
CHCl ₃	1	0.7	b	b	
acetone	5	0.9	b	b	

^a Errors are $EM_1 \pm 60\%$, $K_1 \pm 40\%$, $EM_2 \pm 80\%$ and $K_2 \pm 60\%$. The values of K_2 are within experimental error of zero, and so the second H-bond does not confer a measurable additional stability on the complex.

Table 6. Estimated Overall Association Constants for Complexes Formed Between Porphyrin 3 and Ligand 4d That Make Either One or Two H-bonds (M^{-1}) and Populations of Partially Bound States Assuming $EM_1 = EM_2 = 0.5 \text{ M}$

solvent		singly H-bonded complex			doubly H-bonded complex			
	K _{est}	zero H-bonds (%)	one H-bond (%)	K _{est}	zero H-bonds (%)	one H-bond (%)	two H-bonds (%)	
toluene	4.2×10^{4}	1	99	8.2×10^{5}	0	10	90	
TCE	2.7×10^{3}	8	92	1.0×10^{4}	4	46	50	
DCM	5.3×10^{3}	13	87	1.5×10^{4}	8	56	35	
CHCl ₃	1.5×10^{3}	35	65	2.5×10^{3}	32	58	10	
acetone	4.3×10^{2}	16	84	1.0×10^{3}	11	59	29	

JA900730Z

10.1021/ja900730z

Published on Web 02/23/2009