Evidence for Partially Bound States in Cooperative Molecular Recognition Interfaces [J. Am. Chem. Soc., 2008, 130, 17718-17725] [J. Am. Chem. Soc. 2008, 130, 17718]. Elena Chekmeneva, Christopher A. Hunter,* Martin J. Packer, and Simon M. Turega

Pages 17722-17723: Equations 3, 4, 6 and 8 relating to the analysis of the sequential binding equilibria are corrected below. The numerical values of the stepwise association constants and effective molarities reported in Tables 5 and 6 are corrected below. Qualitatively, the results are similar to those in the original publication, and the main conclusions are not affected. However, the overall association constant estimated for the doubly H-bonded complex in Table 6 is always larger than the value estimated for a singly H-bonded complex, even when the most populated state of the doubly H-bonded complex is the singly H -bonded species.

$$
\begin{gather*}
K_{\mathrm{obs}}=K_{0}\left(1+K_{1}\right) \tag{3}\\
K_{\mathrm{obs}}=K_{0}\left(1+K_{1}+K_{1} K_{2}\right) \tag{4}\\
E M_{1}=\frac{K_{1}}{4 K_{\mathrm{H}}}=\frac{K_{\mathrm{obs}}-K_{0}}{4 K_{0} K_{\mathrm{H}}} \tag{6}\\
E M_{2}=\frac{8 K_{2}}{6 K_{\mathrm{H}}}=\frac{8\left(K_{\mathrm{obs}}-K_{0}-K_{0} K_{1}\right)}{6 K_{0} K_{1} K_{\mathrm{H}}} \tag{8}
\end{gather*}
$$

Table 5. Effective Molarities, $E M(M)$, Sequential Equilibrium Constants for H -Bond Interactions, K_{1} and $K_{2}\left(\mathrm{M}^{-1}\right)$, in the Complexes Formed Between Porphyrin 3 and Ligands 4b and 4d at $298 \mathrm{~K}^{a}$

solvent	$3 \cdot 4 \mathrm{~b}$		$3 \cdot 4 \mathrm{~d}$	
	K_{1}	$E M_{1}$		
	14	0.1	14	0.8
toluene	3	0.2	b	b
TCE	5	0.7	b	b
DCM	1	0.7	b	b
CHCl_{3}	5	0.9	b	b
acetone				

${ }^{a}$ Errors are $E M_{1} \pm 60 \%, K_{1} \pm 40 \%, E M_{2} \pm 80 \%$ and $K_{2} \pm 60 \%$.
${ }^{b}$ The values of K_{2} are within experimental error of zero, and so the second H-bond does not confer a measurable additional stability on the complex.

Table 6. Estimated Overall Association Constants for Complexes Formed Between Porphyrin $\mathbf{3}$ and Ligand 4d That Make Either One or Two H-bonds $\left(\mathrm{M}^{-1}\right)$ and Populations of Partially Bound States Assuming $E M_{1}=E M_{2}=0.5 \mathrm{M}$

solvent	singly H-bonded complex			doubly H-bonded complex			
	$K_{\text {est }}$	zero H-bonds (\%)	one H-bond (\%)	$K_{\text {est }}$	zero H-bonds (\%)	one H-bond (\%)	two H -bonds (\%)
toluene	4.2×10^{4}	1	99	8.2×10^{5}	0	10	90
TCE	2.7×10^{3}	8	92	1.0×10^{4}	4	46	50
DCM	5.3×10^{3}	13	87	1.5×10^{4}	8	56	35
CHCl_{3}	1.5×10^{3}	35	65	2.5×10^{3}	32	58	10
acetone	4.3×10^{2}	16	84	1.0×10^{3}	11	59	29

JA900730Z

